Summary

In this paper are described determinations of the equilibrium of the reaction Se (black) $+2 \mathrm{I}_{2}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{2} \mathrm{SeO}_{3}+4 \mathrm{H}^{+}+4 \mathrm{I}^{-}$at 25°. The equilibrium constant $K=\left(\mathrm{H}_{2} \mathrm{SeO}_{3}\right)\left(\mathrm{H}^{+}\right)^{4}\left(\mathrm{I}^{-}\right)^{4}$ was found to be 1.46×10^{-14}, expressing the concentrations in moles per 1000 g . of water and using the activities of H^{+}and I^{-}in place of their concentrations.

From this constant and existing thermodynamic data the reduction potential of $\mathrm{Se}($ black $)+3 \mathrm{H}_{2} \mathrm{O}(1)=\mathrm{H}_{2} \mathrm{SeO}_{3}+4 \mathrm{H}^{+}+4 \mathrm{E}^{-}$was calculated to be -0.740 volt, showing that the reducing power of selenium (at $1 M$ H^{+}concentration) is about the same as that of $\mathrm{Fe}^{++}, \mathrm{Fe}^{+++}(-0.747)$, and intermediate between those of $\mathrm{I}^{-}, \mathrm{I}_{2}(\mathrm{~s})(-0.536)$ and $\mathrm{Ag}, \mathrm{Ag}^{+}(-0.800)$.
The corresponding free energies $\left(\Delta F^{\circ}\right)$ at 25° of $\mathrm{H}_{2} \mathrm{SeO}_{3}, \mathrm{HSeO}_{3}{ }^{-}$, and $\mathrm{SeO}_{3}{ }^{=}$at $1 M$ were found to be $-101,360,-97,850$ and $-87,890$ calories, respectively.

Pasadena, California
[Contribution from the Research Laboratory of the Non-Resident Lectureship in Chemistry, Barer Laboratory, Cornell University]

TRANSITION CELLS OF THE SIXTH CLASS

By Ernst Cohen and Ernest J. Joss
Received December 5, 1927 Published March 7, 1928

A transition cell may be defined broadly as any reversible galvanic element containing a solid substance which may exist in a number of modifications.
While five different classes of such elements have been treated theoretically as well as experimentally by Ernst Cohen and his co-workers, ${ }^{1}$ transition cells of the sixth class have not, as yet, been experimentally realized. Such an element is to contain a depolarizer which possesses a transition point. This paper deals with a transition cell of this type, the depolarizer being silver iodide.

Experimental

It was thought best to use a cell with a standard electrode, rather than two electrodes of silver iodide, one stable and the other metastable. With the former type of cell the temperature-e.m.f. curve may be run over a wide range of temperatures, the transition temperature being indicated by a sudden change in the temperature coefficient of e.m.f. The choice of an electrolyte afforded some difficulty. The use of aqueous solutions was impractical, since the temperatures to be used were as high as 175°. The solvent finally chosen was fused calcium chloride hexahydrate. The boiling point of this substance was within the temperature range over
${ }^{1}$ Ernst Cohen, "Physico-chemical Metamorphosis and Some Problems in Piezo. chemistry," McGraw-Hill Book Co., New York, 1926, p. 151 ff.
which the experiments were to be run, so a closed apparatus was necessary. The melting point was 29.9° which was well below all experimental temperatures.
The cells were made up according to the following scheme:

$$
\mathrm{Ag}(\mathrm{~s})-\mathrm{AgI}_{(0)}\left|\begin{array}{c}
\mathrm{CaCl}_{2} 6 \mathrm{H}_{2} \mathrm{O}_{(1)} \\
\mathrm{AgI}_{(0)} \\
\left.\mathrm{PbI}_{2(0)}\right)
\end{array}\right| \mathrm{Pb}(\mathrm{~s})
$$

The design of the cell is shown in Fig. 1.
A, the positive pole, is a silver iodide electrode made after the method of Jones and Hartmann. ${ }^{2}$ B is the standard electrode, made of pure lead. The two electrodes were joined to the H-cell by means of inner seals. A side tube was provided for introducing the electrolyte. The whole cell, made of

cm.

Fig. 1. heavy Pyrex glass, was quite small and compact.

The electrolyte was molten calcium chloride hexahydrate saturated with both silver iodide and lead iodide at 40°. This solution was introduced into the cell through the side tube, which was subsequently sealed off at a constriction provided for this purpose. It is probable that little if any silver iodide was in solution around the lead electrode, due to interaction with the metallic lead.

The cell was completely immersed in a bath of Crisco, a hydrogenated cooking fat. This bath was placed in an air thermostat for temperature control. The air thermostat was built from an ordinary $50 \times 45 \times 30 \mathrm{~cm}$. gas oven. This was covered on all sides with a 2 cm . layer of sheet asbestos. Air circulation was maintained within the oven by means of a 20 cm . four bladed fan. The shaft driving this fan ran in a bearing fastened in a board across the top of the oven. The fan was driven at about 1400 r.p.m. by a small electric motor. A separate motor ran a stirrer for the oil-bath. The stirrer passed through the top of the oven and was connected directly to the motor. The speed of this motor was approximately 200 revolutions per minute.

The temperature of the oven was controlled by means of a spiralled, mercury in glass, thermal regulator. The capillary tube at the top of the regulator was passed through the top of the oven and protruded eight centimeters up into the outside air. This precluded the dangers of mercury at high temperatures. The temperature was measured by means of a thermometer immersed in the oil-bath, so that the mercury bulb was very close to the transition element. The thermometers used were very long so that the scale was visible above the oven. 'These thermometers were graduated with 0.1° divisions and calibrated against standard thermometers calibrated by the Physikalisch-Technische Reichsanstalt at Charlottenburg-Berlin.

The oven was fitted with a main electrical heating unit, consisting of a number of coils of nichrome wire wound on Pyrex glass tubes, and an auxiliary heating unit made by winding a single coil of nichrome wire on asbestos board. One end of the main

[^0]heating coil was attached to one end of the auxiliary coil, from which junction a common lead was run to the source of current (110 A.C.). The other end of the main heating coil was connected, in series with a variable rheostat (Ward-Leonard, Type RLR 155) and an ammeter (Weston, 10 -ampere range, with 1.5 multiplier), to the source of current. The other end of the auxiliary coil was connected, in series with a fixed resistance and a relay, to the source of current. Both circuits were equipped with knife switches so that they might be operated independently. The relay in the auxiliary circuit was governed by the mercury thermo-regulator and a four-volt source of current. The resistances were fixed so as to cause the main heating coil alone to raise the temperature to about five degrees below the desired temperature; while the auxiliary coil, if the circuit were kept closed, would further raise the temperature to about five degrees above that desired.

The leads from the transition cell were carried out through small glass tubes passing through the side of the oven.

The vibration of the stirrers increased the sensitivity of the thermo-regulator markedly.

With the thermostat described above, temperatures constant to within 0.1° for long periods of time were obtainable.

The electromotive force of the cell was measured by means of the Poggendorff compensation method. A Leeds and Northrup student potentiometer was used in connection with a quite sensitive galvanometer. The standard of electromotive force was a Weston cell.

The method used was to start measurements at the lower end of the temperature range and so regulate the current through the main heating element as to have the ternperature rise approximately one degree centigrade every five minutes. The electromotive force was measured for every half degree rise in temperature, the potentiometer being balanced against the standard cell every few readings. When the temperature had risen as high as was desired, the current was so adjusted as to allow cooling at the same rate as the heating. Measurements were again made in the same manner as with rising temperature.
The cell came to equilibrium very rapidly under the conditions of the experiment. This was proved by the fact that the electromotive forces measured with rising temperature checked those with falling temperature within experimental error.

Each of the two runs shown in the following tables was completed without interruption. A different cell was used in each run.

Table I gives the data for the first cell, which we shall designate as Cell I. In this table t refers to the actual temperature in centigrade degrees and E to the electromotive force of the cell in volts. The points indicated by asterisks are those arbitrarily chosen for calculations.

Table I							
			Data	Cell I			
t	E	t	E	t	E	t	E
128.07	0.2599	129.41	0.2603	141.40	0.2670	152.00	0.2724
120.33	. 2556	129.82	. 2605	*141.97	. 2673	*152.70	. 2726
117.91	. 2543	130.30	. 2607	142.82	. 2678	154.00	. 2731
120.90	. 2558	*130.70	. 2610	143.31	. 2682	154.75	. 2735
118.70	. 2547	131.31	. 2613	*144.30	. 2687	155.40	. 2738
119.47	. 2555	131.95	. 2616	145.10	. 2691	*155.95	. 2740

Table I (Concluded)

	\boldsymbol{E}	\boldsymbol{E}				\boldsymbol{E}	\boldsymbol{t}
119.62	.2557	132.78	.2621	145.79	.2695	156.55	.2743
121.50	.2560	133.38	.2625	146.19	.2698	157.10	.2745
122.07	.2563	134.42	.2630	146.90	.2701	157.65	.2747
122.93	.2567	135.25	.2634	${ }^{*} 134.28$.2631	${ }^{*} 158.20$.2750
123.50	.2570	135.80	.2637	144.70	.2687	159.00	.2753
${ }^{2} 124.13$.2573	136.25	.2640	145.75	.2694	${ }^{*} 159.25$.2756
124.71	.2576	136.80	.2643	146.38	.2698	161.20	.2762
125.35	.2579	${ }^{*} 137.30$.2646	146.90	.2701	${ }^{*} 161.80$.2765
125.78	.2582	137.97	.2650	${ }^{*} 147.30$.2705	167.80	.2794
126.29	.2585	138.32	.2653	${ }^{*} 149.00$.2710	167.70	.2794
126.72	.2588	139.00	.2656	149.50	.2712	168.18	.2795
127.20	.2590	139.62	.2860	150.60	.2716	169.20	.2803
127.80	.2594	140.12	.2663	150.80	.2718	169.60	.2810
${ }^{2} 128.28$.2596	140.70	.2666	151.17	.2720		

These data when plotted give the graph shown in Fig. 2. The ordinates are electromotive forces in volts and the abscissas are temperatures in centigrade degrees.

Fig. 2.
It may be seen that the temperature coefficient of e.mn.f. is constant over two distinct ranges of temperature. The intersection of the two
curves gives the transition temperature. To find this temperature accurately it was necessary to calculate the equation for each of the two curves, using the method of least squares, and to solve for the point of intersection. The equation of the lower curve, which we shall call the α-curve, since the α-form of silver iodide is stable in this range, is

$$
\begin{equation*}
E_{1}=0.1870+0.000566 t \tag{1}
\end{equation*}
$$

The equation of the upper curve, which we shall designate as the β curve, is

$$
\begin{equation*}
E_{2}=0.2062+0.000435 t \tag{2}
\end{equation*}
$$

The intersection of these curves is found to be at 140.6°. This is the transition temperature of α - and β-silver iodide.

Table II shows the results obtained with Cell II. The asterisks indicate the points upon which calculations were based.

Table II

Data for Cell II

t	E	t	E	t	E	t	E
115.90	0.2363	132.50	0.2440	146.90	0.2515	*155.80	0.2545
116.28	. 2365	*133.10	. 2444	147.60	. 2518	155.30	. 2543
116.70	. 2368	134.12	. 2448	*148.02	. 2520	*154.50	. 2540
117.32	. 2370	134.68	. 2451	148.70	. 2523	154.20	. 2538
118.10	. 2373	135.95	. 2458	149.30	. 2525	*153.00	. 2535
119.16	. 2377	*136.43	. 2460	150.40	. 2528	*152.20	. 2533
119.80	. 2380	137.10	. 2463	151.92	. 2533	151.55	. 2530
120.30	. 2383	137.30	. 2465	152.20	. 2535	*150.60	. 2526
120.69	. 2385	138.00	. 2468	153.00	. 2538	150.35	. 2525
121.38	. 2388	*138.35	. 2470	153.70	. 2540	*149.45	. 2522
121.67	. 2390	139.30	. 2473	154.60	. 2543	*148.80	. 2520
122.33	. 2393	*139.80	. 2476	155.30	. 2545	147.85	. 2518
122.80	. 2395	140.56	. 2480	156.13	. 2548	147.05	. 2515
123.98	. 2400	141.10	. 2483	156.55	. 2550	146.90	. 2510
124.72	. 2403	141.40	. 2485	156.98	. 2551	146.55	. 2513
*125.07	. 2405	141.90	. 2488	158.20	. 2555	145.95	. 2510
126.03	. 2410	142.32	. 2490	*158.80	. 2558	145.48	. 2508
126.71	. 2413	142.90	. 2493	159.55	. 2560	144.50	. 2500
127.02	. 2415	*143.40	. 2495	*160.30	. 2562	143.68	. 2497
127.70	. 2418	143.89	. 2498	161.00	. 2564	142.50	. 2492
128.62	. 2422	144.30	. 2500	159.80	. 2560	141.80	. 2483
*129.78	. 2427	144.90	. 2503	159.30	. 2559	141.02	. 2480
130.23	. 2430	145.20	. 2505	158.50	. 2555	139.82	. 2474
130.80	. 2433	*145.70	. 2508	157.95	. 2553		
131.31	. 2435	145.91	:2510	*157.00	. 2550		
*132.00	. 2438	146.50	. 2513	156.55	. 2548		

The equation of the α-curve, the one along which α-silver iodide is stable, is

$$
\begin{equation*}
E_{1}=0.1775+0.0005026 t \tag{3}
\end{equation*}
$$

The equation of the β-curve is

$$
\begin{equation*}
E_{1}=0.1968+0.000371 \tag{4}
\end{equation*}
$$

The intersection of the two curves is found to be at 146.7°.
The transition temperature of silver iodide will be treated by us in a special paper. Suffice it to say here that the values mentioned in the earlier literature vary from 138 to 147°. This is a consequence of the strong retardations which may occur in this transition. In our case evidently there occurred no retardation, the electrolyte acting as an accelerator.

It is of interest to know the heat of transition of silver iodide. If we write this reaction, assumed to be occurring in the cell below the transition temperature, we have:

$$
\begin{equation*}
\mathrm{AgI}_{\alpha}+1 / 2 \mathrm{~Pb}=\mathrm{Ag}+1 / 2 \mathrm{PbI}_{2} \tag{5}
\end{equation*}
$$

The reaction assumed to be occurring above the transition temperature is:

$$
\begin{equation*}
1 / 2 \mathrm{PbI}_{2}+\mathrm{Ag}=\mathrm{AgI}_{\beta}+1 / 2 \mathrm{~Pb} \tag{6}
\end{equation*}
$$

The summation of the two reactions gives

$$
\begin{equation*}
\operatorname{AgI}_{\alpha}=\mathrm{AgI}_{\beta} \tag{7}
\end{equation*}
$$

At the transition temperature, the two forms of silver iodide are in equilibrium, hence the free energy increases of the two reactions are equal, that is

$$
\begin{equation*}
\Delta F_{5}=\Delta F_{0} \tag{8}
\end{equation*}
$$

where the subnumerals refer to the marginal numbers of the equations. The increase in heat content for the transition as expressed by Equation (7) is given by the following equation

$$
\begin{equation*}
\Delta H_{7}=T N f\left[\frac{d E_{5}}{\mathrm{~d} T}+\frac{d E_{6}}{\mathrm{~d} T}\right] \tag{9}
\end{equation*}
$$

where T is the temperature of transition on the absolute scale, N is the valence change, f is Faraday's constant and E is the electromotive force of the cell.

Let us now apply this equation to the data of Cell I. From (1) and (2)

$$
\begin{aligned}
& \Delta H_{7}=419.6 \times 1 \times 96,500(0.000566-0.000435) \\
& \Delta H_{7}=5304 \text { joules }=1267 \text { cal. per gram mole }
\end{aligned}
$$

The same calculation for Cell II (from 3 and 4) gives

$$
\Delta H_{7}=419.7 \times 1 \times 96,500(0.0005026-0.000371)
$$

$$
\Delta H_{7}=5330 \text { joules }=1274 \text { cal. per gram mole }
$$

The average of these two values is 1270 cal ., that is

$$
\operatorname{AgI}_{\alpha}=\operatorname{AgI}_{\beta}-1270 \text { cal. }
$$

Previous determinations by various investigators vary from 1355 to 1597 cal.

Summary

1. A type of transition cell pointed out by one of us many years ago, but hitherto never experimentally realized, has been constructed.
2. This transition cell of the sixth class, in which the depolarizer undergoes a polymorphic transformation, is experimentally realized in the case of silver iodide.
3. Temperature-e.m.f. measurements show the transition temperature to be 146.6°.
4. The heat absorbed during transition of one mole of AgI_{α} to one mole of AgI_{β}, calculated from the slopes of the e.m.f.-temperature.curves, is 1270 cal .

Ithaca, New York
[Contribution from the John Harrison Laboratory of Chemistry of the University of Pennsylvania]

DECOMPOSITION OF DIACETONE ALCOHOL BY WEAKER BASES

By Gösta Åkerlöf
Received December 6, 1927 Published March 7, 1928

Introduction

In two preceding papers ${ }^{1}$ have been given the results of the measurements of the decomposition velocity of diacetone alcohol in alkali hy-droxide-alkali salt solutions. In this paper will be presented some measurements with weaker bases, such as ammonia, used as catalysts. Similar measurements for hydrogen ion catalysis with weaker acids present have been carried out by Harned and Hawkins ${ }^{1 \mathrm{c}}$ for the hydrolysis of ethyl formate and ethyl acetate.
Previously it has been shown by Arrhenius, ${ }^{2}$ Brönsted, ${ }^{3}$ Harned ${ }^{1}$ and others, ${ }^{4}$ that when a neutral salt, which in itself is a strong electrolyte, is added to a solution of a weak electrolyte, the dissociation of this increases. For water as a weak electrolyte this increase has been measured by Harned ${ }^{4,6, b}$ Harned and Swindells, ${ }^{5}$ Åkerlöf, ${ }^{6}$ and Harned and James ${ }^{7}$ for a number of different salt solutions. At low salt concentrations the curves obtained for the decomposition velocity of diacetone alcohol in neutral salt solutions of the weaker bases seemed to be of the same type as the curves obtained for the concentration of water as an electrolyte in the same salt solutions. In other words, the concentration of the weak bases as electrolytes was changed by the addition of neutral salts in the same manner as for water.
${ }^{1}$ (a) Åkerlöf, This Journal, 48, 3046 (1926); (b) 49, 2955 (1927); (c) Harned and Hawkins, ibid., 50, 85 (1928). They give references relating to older literature on this subject.
${ }^{2}$ Arrhenius, Z. physik. Chem., 31, 197 (1899).
${ }^{3}$ Brönsted, J. Chem. Soc., 119, 574 (1921).
${ }^{4}$ (a) Harned, This Journal, 47, 930 (1925); (b) Z. physik. Chem., 117, 1 (1925); compare further (c) Schreiner, Z. anorg. Chem., 135, 333 (1924); (d) Harned and Akerlöf, Physik. Z., 27, 411 (1926).
${ }^{5}$ Harned and Swindells, This Journal, 48, 126 (1926).
${ }^{6}$ § kerlöf, ibid., 48, 1160 (1926).
${ }^{7}$ Harned and James, J. Phys. Chem., 30, 1060 (1926).

[^0]: ${ }^{2}$ Jones and Hartmann, This Journal, 37, 755 (1915).

